The Magic of Petroleum

ENVIR 100 Nov 5, 2008

https://courses.washington.edu/.../PetroleumGe

The Prize

- In 1970, several major US oil companies paid the government millions of dollars for oil-drilling rights off the coast of Oregon and Washington
- They drilled three holes, then abandoned the operation, losing millions of dollars

What went wrong?

- They forgot the story about the Texas county that produced oil after 30 dry holes were drilled
- They did not listen to the economists telling them that the amount of oil discovered depends on the number of dollars spent on the search
- Environmentalists were better organized in Oregon and Washington than anywhere else
- There was really bad news in those three holes
- All/None of the above

A key concept in the reading was...

- 1. Hubbert's folly
- 2. Hubbert's peak
- 3. Hubbert's equilibrium
- 4. Hubbert's squash

The time scale relevant for oil formation is know as

- 1. "Geologic time"
- 2. "Paleologic time"
- 3. "Neologic time"
- 4. "Hammer time"

The author of the article argues that world oil production will decline

- 1. By 2100
- 2. By 2050
- 3. By 2010
- 4. Never

The Magic of Petroleum Outline

- I. Where does petroleum come from?
- II. Petroleum A Strategic Natural Resource

I. Where does petroleum come from?

What is petroleum?

- **Petroleum**: A general term for all naturally occurring hydrocarbons (hydrogen + carbon)
- Solid Hydrocarbons: Asphalt
- Liquid Hydrocarbons: Crude oil
- **Gas Hydrocarbons:** Natural Gas: methane, butane, propane, etc.

The simplest hydrocarbon is Methane (CH4)

1. Source Rocks Organic Matter

- Sedimentary rocks rich in organic matter
 - 0.5 2% by weight
- Most commonly microscopic marine material, but it can be land based material
- Organic material cannot decay too much
 - It has to keep its carbon

1. Source Rocks Modern Sedimentary Basins

- Gulf of Mexico
- Parts of the Mediterranean and Black Sea

The Mediterranean Basin

2. Transform organic matter Add heat and pressure by burying it (**Maturation**)

PETROLEUM & NATURAL GAS FORMATION

Tiny sea plants and animals died and were buried on the ocean floor. Over time, they were covered by layers of silt and sand.

3. Carrier beds

Oil on the move

- Oil is less dense than water and will rise through the fluid system of the surrounding rock
- Carrier beds are rock layers that allow fluids to pass through them
 - Ex: Sandstone
- If petroleum stays buried, it can become post-mature

4. Traps

- If nothing stops oil from rising, it will reach surface
 - Ex: The La Brea tar pits
- Traps can be rocks that do not allow fluids to pass through them, or folds and faults in the rock can trap petroleum

5. Reservoir rocks

The oil needs to be trapped in a good place

- A good reservoir rock is:
 - Porous: holes
 - Permeable: holes are connected
 - so that its fluids
 can be **produced** (removed from
 them)

6. Proper timing

 Timing between accumulation of organic material, petroleum maturation, migration, and trap formation is vital

Review: Where does petroleum come from?

- 1. Source rocks rich in organic matter
- 2. Transform the organic material with heat and pressure to into petroleum (Maturation)
- **3. Carrier beds** that allow the generated petroleum to move
- 4. Traps that keep the petroleum below ground
- 5. Adequate **reservoir beds** from which the petroleum can be extracted
- 6. Proper **timing** of events 1-5

Why is there oil in Texas?

II. A Strategic Natural Resource

National Geographic, 2002

Strategic Natural Resource

- A) a resource that supports military power in a vital way
- B) a resource to which states would be willing to fight to protect their access to

Figure 5.17 Strategic Petroleum Reserve, 1977-2006

¹ Imported by SPR and imported by others for SPR.

² Derived by dividing end-of-year SPR stocks by annual average daily net imports of all petroleum.

World Wars

- World War One
 - Churchill switches
 British navy to diesel
- World War Two
 Japanese oil embargo
- Carter Doctrine, 1980

What do we get from oil?

- 1 barrel = 42 gallons of crude oil
- 83% becomes fuel

 Gasoline, diesel, jet fuel, heating oil, and liquefied petroleum gas (propane and butane)
- 17% other
 - Solvents, fertilizers, pesticides, plastics

* These add up to 44.6 gallons because volume is increased during the refining process.

How much oil do we use?

- US consumes 20,680,000 barrels of oil each day (2007)
- US motor gasoline consumption
 9,286,000 b/d (390 million gallons/day)
 (2007)
- World consumes
 83,607,000 b/d (2005)

US oil consumption 1980-2006

Where do we get our oil from?

2007 US Imports by Country

Rank	Country	Mb/d
1	Canada	2.5
2	Mexico	1.5
3	Saudi Arabia	1.5
4	<u>Venezuela</u>	1.4
5	<u>Nigeria</u>	1.1
6	Algeria	0.67
7	Iraq	0.48
8	Angola	0.51
9	Russia	0.41
	All Countries	13.5
	Non-OPEC	8.1
Total	OPEC	5.98

Annual Total U.S. Total Crude Oil and Petroleum Products Imports From OPEC Countries 7,000 Day 6,000 . Thousand Barrels per 5,000 4.000 3.000 2.000 1.000 1990 1975 1980 1985 1995 2000 2005 Source: U.S. Energy Information Administration

Oil exports by country

Oil imports by country

Who Produces the World's Oil?

Top World Oil Producers, 2005*				
(OPEC members in <u>underlined italics</u>)				
		Total Oil Production**		
Rank	Country	(million barrels/day)		
1	<u>Saudi Arabia</u>	11.1		
2	Russia	9.5		
3	United States	8.2		
4	<u>Iran</u>	4.2		
5	Mexico	3.8		
6	China	3.8		
7	Canada	3.1		
8	Norway	3.0		
9	<u>United Arab</u> <u>Emirates</u>	2.8		
10	Venezuela	2.8		
11	<u>Kuwait</u>	2.7		
12	<u>Nigeria</u>	2.6		
13	Algeria	2.1		
14	Brazil	2.0		

*Table includes all countries total oil production exceeding 2 million barrels per day in 2005. **Total Oil Production includes crude oil, natural gas liquids, condensate, refinery gain, and other liquids.

How much oil is there?

Oil Reserves: Year-end 2007				
Region	Billions of Barrels	Percentage		
North America	69.3	5.6%		
Latin America	111.2	9.0%		
Europe and Eurasia	143.7	11.6%		
Middle East	755.3	61.0%		
Africa	117.5	9.5%		
Asia and Pacific	40.8	3.3%		
Global	1237.9	100%		

Oil Reserves: Year-end 2007

Proved reserves at end 2007 Thousand million barrels

Reserves vs. Resources

- Reserves are natural resources that have already been discovered and can be produced for profit today
- Resources are deposits that we know of (or believe to exist), but are not producible at a profit today
- Example: *oil reserves* ~1.2 trillion barrels, *oil resources* ~2 trillion barrels

A Problem for Oil Producers

A slide in oil prices has caused problems for oil producers that were banking on higher prices. For example, Venezuela's 2009 budget was based on \$60-a-barrel oil and Russia's was pegged to roughly \$70.

Source: Bloomberg

Price of oil, 2008

New York Times 10/21/2008

Are We Running Out of Oil?

Marion King Hubbert (1903-1989)

- Shell geophysicist
- Hubbert's Peak and Curve

US Peak Crude Oil Production

¹ Petroleum products supplied is used as an approximation for consumption.

² Crude oil and natural gas plant liquids production.

Does consumption follow Hubbert's curve?

US Energy Information Administration Predictions

Figure 2. Annual Production Scenarios with 2 Percent Growth Rates and Different Resource Levels (Decline R/P=10)

Note: U.S. volumes were added to the USGS foreign volumes to obtain world totals.

Reserve to Production Ratios

Reserves-to-production (R/P) ratios Years World

BP Statistical Review, 2008

Questions?

Oil Production by Region

BP Statistical Review, 2008

Distribution of Reserves

Distribution of proved reserves in 1987, 1997 and 2007 Percentage

Middle East Europe & Eurasia Africa S. & Cent. America North America Asia Pacific

Oil Consumption

BP Statistical Review, 2008

World Supply and Demand

Global Oil Flows

Major trade movements 2007

Trade flows worldwide (million tonnes)

BP Statistical Review, 2008

Petroleum Imports by Country of Origin

Selected Countries, 2006

3.0-

Total, OPEC, and Non-OPEC, 1960-2006 15-

Selected OPEC Countries, 1960-2006

Notes: • OPEC=Organization of the Petroleum Exporting Countries. • Because vertical scales differ, graphs should not be compared.

Selected Non-OPEC Countries, 1960-2006

Source: Table US Energy Information Administration

Petroleum Imports by Type

¹ Liquefied petroleum gases.

² Aviation gasoline and blending components, kerosene, lubricants, pentanes plus, petrochemical feedstocks, petroleum coke, special naphthas, waxes, other hydrocarbons and oxygenates, and miscellaneous products. Note: Because vertical scales differ, graphs should not be compared. Source: Table 5.3.

Where is there oil in North America?

Petroleum Exploration

- Surface and subsurface geological studies
- Seismic surveys
- Gravity and magnetic surveys
- Horizontal magnetic gradient
- Helium content of soils

Crude Oil and Natural Gas Plant Liquids Production, 1949-2006

¹ Petroleum products supplied is used as an approximation for consumption.
² Crude oil and natural gas plant liquids production.

25-

Trade, 1949-2006

Note: Because vertical scales differ, graphs should not be compared. Sources: Tables 5.1 and 5.3.

December 19, 2005. Data for the United States are from the Energy Information Agency, November 2005.